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Abstract—We cluborate on a generalized plasticity model which belongs to the class of gradient
models suggested carlier by Aifantis and co-workers. The generalization of the conventional theory
of plasticity has been accomplished by the inclusion of higher-order spatial gradients of the equiv-
alent plastic strain in the yield condition. First it is shown how these gradients affect the critical
condition for the onset of localization and allow for a wavelength selection analysis leading to
estimates for the width and/or spacing of shear bunds. Duc to the presence of higher-order gradients,
additional boundary conditions for the equivalent plastic strain are required. This question and
also the associated problem of the formulation and solution of general boundary vilue problems
were left open in the previous work. We demonstrate here that upon assuming a certain type of
additiona! boundary conditions, the structural symmetries of the gradient-dependent constitutive
maodel are such that there exists a variational principle for the displacement rates and the nite of
the equivalent plastic strain, The variational principle can serve as a basis for the numerical solution
of boundary valuc problems in the sense of the finite clement method. Explicit expressions for the
tangent stiffuess mateix and the gencralized nodal point forees are given,

1. INTRODUCTION

The recent interest in generalized continuum plasticity theories has its origin in certain
serious drawbacks of the conventional theory in the case of strain-softening materials. For
such materials, critical configurations exist (c.g. at the insertion of shear bands and other
bifurcation points) where the governing differential equations change type (e.g. from clliptic
to hyperbolic), thus making it impossible to use the sume mathematical setting in the post-
critical or post-bifurcation regime where the deformation starts to localize along nurrow
shear or fracture zones.

The absence of any characteristic or internal length from conventional shear band
analyses has left the size of the localized strain zone unspecified and has led to a eritical
dependence of finite element solutions on the employed finite clement mesh size. Further-
more, if the material does not have a residual strength, the energy dissipated in the localized
zone tends to zero as the mesh is refined, a fact which is physically unreasonable [e.g. Lasry
and Belytschko (1988)]. Some of these features have first been documented by numerical
examples for simple strain-softening materials by Schreyer and Chen (1984) and Buzant
(1984). More details and references on these aspects can be found in the papers by Pijaudier-
Cabot et al. (1988) and Lasry and Belytschko (1988).

The mathematical model diflicultics mentioned above reflect the physical fact that
upon localization the limit of the range of validity of the conventional theory is reached.
In models without any internal length or higher-order continuum structure, it should be
expected that the deformation is homogencous on the scale of the characteristic volume
element of the material. Thus, no matter how small this scale may be, if the material is
capable of developing intense deformation zones (c.g. Dirac delta-like deformation regions),
it is obvious that the situation cannot be described by such models.,

t Also: Division of Physics and Mochanics. School of Technology, Aristotle University of Thessaloniki,
Thessaloniki, Greece.
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The physical range of validity of continuum methods can be extended by adopting a
generalized continuum approach [see Kroner {ed.) (1968) for examples]. In these theories,
internal length scales are introduced by the consideration of higher-order deforma-
tion gradients in the constitutive relations [e.g. Mindlin (1965)] or additional degrees of
freedom are assumed as in the Cosserat theory {or Mindlin's (1964) generalization of it:
see Schaefer (1962) and Herrmann (1972) for reviews on this subject]. It now appears
that it is in the region near bifurcation or instability points that these higher-order con-
tinuum theories are most useful as they provide the necessary mathematical structure
for describing the material's response in the post-instability regime. Moreover, it turns
out that such a description is possible by emploving relatively-simple and physically-
motivated modifications rather than the full and rather complex available generalized
theories.

In the case of Cosserat-type theories. this was illustrated in the papers by Mihlhaus
(1985, 1986. 1989) ; Miihthaus and Aifantis {1989) ; Mihlhaus and Triantafyilides (1987);
Miihthaus and Vardoulakis (1986, 1987). In particular, it wus shown that materials with a
regular block structure, as well as layered and granular materials, can be modelled in an
easy and elegant way by employing a specific Cosserat plasticity theory. [t thus appears
that in this case a standard application of the generalized theories would lead to an
unnecessary complexity of the model. Similarly, in the case of higher-order gradient theories,
it was shown by Aifantis (1984a,b.c. 1985, 1987, 1989) that inclusion of the second
gradient of deformation in the expression of stratn encrgy [for hyperelastic materials see
Triantafyllidis and Aifantis (1986)] or flow stress (for plastic materials) is suflicient to
preserve ellipticity in the governing equilibrium cquations in the softening regime and
determine, among other things, the width of shear bands. In connection with these gradient
theories it is emphasized that their structure is such that it permits an interesting non-lincar
analysis in the softening or post-localization regime which, among other things, allows one
to distinguish between shear-band width and spacing. This distinction is not possible within
the classical lincar treatment of the subject.

In view ol the above discussion we consider here materials where microstructural
effects become significant only at the onset of localization, In this conncction we take
advantage of the already well-established fact that the conventional (without higher-order
gradients) theory satistuctorily predicts the orientation of the localized deformation zones.
Conscquently, in our modification of the conventional theory we leave the clasticity faw
and the fow rule unaltered and modify only the yicld condition. The katter is accomplished
by the inclusion of second- and fourth-order gradients of the cquivalent plastic strain
characterizing the influence of the underlying heterogencously-evolving microstructure. As
mentioned carlier, a theory for rigid plastic materials where only the second gradient was
included was first suggested by Aifantis (1984a, b, ¢, 1987), Zbib and Aifantis (1988) and
Coleman and Hodgdon (19835). The consideration of the fourth-order gradient results in a
mathematical structure allowing already in a lincar stability analysis the study of salient
features (c.g. the determination of preferred wavelengths) of the localized deformation
pattern. This is not possible if only the sccond gradient is included in the yield condition
[see also Zbib and Aifuntis (1988)].

The paper is organized as follows : in Scction 2 an outline of the constitutive equations
pertaining to the present gradient theory of plasticity is given. For simplicity and without
loss of generality for our purposes, infinitesimal deformations arc assumed. In Section 3
some of the implications of higher-order gradients are discussed within the scope of lincar
bifurcation analysis with emphasis being placed on critical conditions for shear banding,
In Scction 4 it is shown that for certain non-standard boundary conditions the structural
symmetrics of the constitutive gradient-dependent equation are such that there exists
a variational principle for the displacement rates and the equivalent plastic strain rates
(which arc treated here as independent variables). The variational principle provides a
convenient sctting for the numerical solution of boundary value problems in the sense
of the finite clement method. Therefore, for completeness, in Section 5 explicit represen-
tations of the effective tangent stiffness matrix and the generalized nodal point forces are
derived.
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2. GRADIENT-DEPENDENT PLASTICITY

In this section we provide a modification of the classical theory of rate-independent

plasticity by incorporating higher-order gradients of the equivalent plastic strain into the
yield condition. First, however, we summarize the notation used:
The inner product of two vectors a and b is denoted as usual by a - b, while the dyadic or tensor product is denoted
by a ® b and defined by the relations (a ® b)u = a(b-u) for all vectors u. The inner product of two tensors A and
B is defined by A-B = tr(AB") where tr denotes trace and T transpose. It then follows that (a®b)-(c®d) =
(a-c)(b-d). The symbol V denotes the gradient operator. and V" = (V-V)". The deviator of the stress tensor
o is denoted as ', u is the displacement vector and we assume |Vu| « [. Then the expression & = {(Vu+Vu')
defines the infinitesimal strain tensor. Upon purely elastic deformation we have ¢ = C[£] where C is the elas-
ticity tensor. According to the usual practice in infinitesimal elastoplasticity we assume that £ = £+ #. The
equivalent stress and plastic strain rate are given respectively by t = (16" ¢ and j = (/267 "§".

For isotropic hardening (softening) plasticity, the appropriate von Mises yicld condition
reads

F=t1—x[y]=0 (H

where 7 = [, dr and & is the flow stress with the symbol [ | being introduced to allow a
possible non-local dependence; i.e. w is, in general, a function of y. On assuming an
associated flow rule [e.g. Hill (1950)] as justified, for example. on the basis of dislocation
mechanics (Aifantis, 1987), we can then write

,

ag
‘E'—'C"l[d]'f"',",’f. (2)

where F <0, F = 0and 7 2 0. The equivalent plastic strain rate 7 is determined from the
consistency condition

F=¢-k[y] = 0. 3)

In the classical theory of plasticity it is usually assumed that the flow stress & depends on
the equivalent plastic strain y alone. This may be appropriate for ncarly homogencous
deformations and specific forms of k[y] are often justified on the basis of homogencously-
evolving microstructures (c.g. dislocations) whose “homogeneous™ motion is directly
related to the observable “*homogencous™ plastic deformation. While for many deformation
processes such an assumption of homogencity holds true, this is not the case with shear
banding problems where the deformation localizes in narrow zones and homogencity is lost
at the scale of the clement. Naturally, in this case, the hardening/softening function has to
be modified to account for the heterogencous evolution of deformation or the net local flux
of microstructures inducing it (Mihlhaus and Aifantis, 1989). Here we accomplish this
modification by assuming, as originally suggested by Aifantis (1984a, b, ¢, 1985), that «
depends on the gradients of y as well. The gradient terms supplement the conventional
model with information on the material's behaviour on the next smaller length scale. For
instance, it is well known (Aifantis, 1989 ; Harren et ol., 1988) that macroscopic shear bands
are often made up of mini deformation bands which are separated by lamellae of elastically-
unloaded material. In this case the internal length scale introduced by the gradient terms is
related to the average thickness of the lamellac. [n a slightly different context, Kratochvil
(1988) has used a non-local hardening model in connection with a dipole drift mechanism
to explain the formation of certain dislocation patterns. By cxpanding the convolution
integral of his non-local hardening law in a Taylor series, a model is obtained similar to
the one which is considered in this paper.

We suppose further that the dependence of x on the gradients of y is linear so that it
follows from tle: assumed isotropy that such a dependence can only involve gradients of
even order V*"y, n =0, 1,.... Retaining only terms up to n = 2, we then have [see also
Zbib and Aifantis (1988, 1989a. b)]:

SAS 28:7-D
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K[yl = co+c, Vi +c.VHy, (4)

where ¢, = ¢,(;). Rigid plastic versions of (1), (2). (4) with ¢, = 0 and ¢, < 0 have been
discussed by Aifantis (1987) and Coleman and Hodgdon (19835) in relation to non-linear
shear-band analyses. In passing, we note that the unloading criterton assumed by Coleman
and Hodgdon differs from the one used here and by Aifantis. It implies an additional
boundary condition for y, namely V°y =0, on the rigid, plastic boundary. As already
mentioned in the Introduction, we proceed here along different lines and deduce the possible
forms of the additionally-required boundary conditions from a variational principle. [In
this connection, we point out that the problem of boundary conditions for a related problem
dealing with the dynamic stability and the corresponding Lyapunov function of a one-
dimensional solid with higher-order gradients and viscosity was recently considered by
Kuttler and Aifantis (1989).]

In recent papers. Lasry and Belytschko (1988) and Pijaudier-Cabot et al. (1988) studied
localization phenomena in a rod under uniaxial dynamic loading. In one of the constitutive
models considered. the assumption was made that the stress at a position x depends on the
average strain within some symmetric neighbourhood of x. This non-local hypothesis [sce
also Aifantis (1984a.b.c) and Bazant and Lin (1988)] contains the proposed gradient
modification and it is instructive to elaborate on this a little more within the present context.
Thus on assuming that tis a function of the average strain 3. we have

.1 i

=g, 7= Vf rx+s)db,. (5)
v Jb,

where, in view of the assumed isotropy, we have |s] € Rand V, = InR" and where R is an

internal characteristic length. The definition (5), can be generalized by the inclusion of a

weighting function in the integrand (Bazant ¢ al., 1984). To bring out similaritics between

(4) and (5) we first expand y(x +5s) into a Taylor scries about s = 0. We have

I . ! .
HX+S) T y+Vy S+ ,,’V"’*,"S"’+ 3 LARLNEE IS 4'V“","S“’-+- (6)

where S =s®5s, S =s®...n-times. .. ® s and the dot - again denotes inner product
between nth-order tensors. In view of the fact that f V" =S+ D ¢/ = 0, it then follows
by simple integration that

i t(14zR®_, | 4R’ _,
TEY V,(éi'Tg“V'f'*ziﬁs“‘“"”“' | @

Now we either assume that |[7—7| « | or that «[+] varies sufficiently slowly with ¥ so that
we can write

dw
t=K)+hG~y), h= 35 (8)
I -
Comparing (7). (8) with (4) yiclds:
R’ R*
co=kK(Y), ¢ = h|—0~, .= /12—86. 9)

The model (5) has significantly simplified the problem of calibration of the constitutive
parameters entering the gradient-dependent yield condition (4). Instead of the functions
ci(y) and c:(7). it only remains to determine the parameter R, the radius of the characteristic
volume element which, in turn, is directly related to the width of the zone of localized
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deformation (see Section 3). The simplicity, however, has to be paid for by a possible
serious mathematical shortcoming; namely that the associated boundary-value problems
are well posed only if # > 0 (or h < 0) for all values of y. Otherwise loss of ellipticity takes
place (see Section 4). Nevertheless, relations (9) can give a helpful hint for the order of
magnitude of ¢,, ¢, if one is only interested in the condition of the onset of the loss of
homogeneity and the nearby states (provided of course that for these states 4 is strictly
positive or strictly negative). In concluding this section, we emphasize that the average
strain approach need not necessarily be adopted for the interpretation of the gradient-
dependent constitutive relation (4). In fact, this approach breaks down in the case where
one needs to perform a fully non-linear analysis for a deformation regime where the material
undergoes both hardening and softening and thus 4 goes from positive to negative values.
In this case ¢, and ¢, should be treated as functions of y independent of each other.

3. SHEAR-BAND ANALYSIS

Consider an infinite body undergoing an initially-homogeneous deformation and under
proportional straining. The question is to determine conditions under which the governing
differential equations admit non-homogeneous simple shear-type solutions, besides the
fundamental, homogeneous solution (Rudnicki and Rice, 1975). To simplify the algebra,
the elastic compressibility of the material is neglected. The deformation takes place in the
(x,. x,) plane.

The Cartesian components of the homogencous initial stress are

g, 0 O
6l=]0 0 o |, (10)
0 0 Ty

and we assume that cither a3, = 0 (uniaxial initial stress) or 64, = 1o, (planc strain). In
view of (10), (2) and (3), (4) we have:

a, = 2G(é,, —ay), (1)
632 = 2G(£22+ ), (12)
1, = 2Gé,,, (13)
Ga '€y, = (h+G)j+c V¥ +c, VY, (14)

where h = dwx/dy with 2 = f =} for the plane strain case, and a = l/\/i. B = l/(2\/§)
for the uniaxial case. The incompressibility of the material allows the introduction of a
stream function ¢ such that

J
uy=¢, ur=—¢,, ()i=5-0). (15)

We insert (15) into (11)-(14) and the resulting relationship again into the equilibrium
conditions d,;;, = 0. Subsequent elimination of p = 4, gives

2+ B = V9, 16)
w11 = (120) 54 Lty Doy an

We now derive the critical conditions for the existence of particular solutions of (16), (17)
of the type
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7 =Foexp (igy). ¢ = ¢, exp (igy). (18)

where :
qg= o and 1= —(sin #)x, +(cos f)x,. (19)

This represents an inhomogeneous simple shear along the plane v = constant where 8 is
the angle between the normal of y = constant and the x, direction and / is the wavelength.
Upon insertion of (18) into (15), (17) we obtain the following homogeneous system of
equations

Ax = 0. (20)
where
[A] :—_I Lol ;l{qf -t A"_‘/_J_ . *—g Lol 1
= . . [ . L — . 2
i_ Ij(-;q — <(C; g - ((’ (f) s sin 2()(/'} X |L‘ ,,_} )

Non-trivial solutions exist if det A = 0 which for ¢ > 0 can be written as

h x4 f8

«» 2x

€ 99
e (22)

#

sin?20 -1+ gt -
(s

The critical values of (0, ¢) arc those making 4/¢ a maximum [see, for example, Rudnicki
and Rice (1975)]. Thus, from

o (h

CONG

we find 0, = xn/4, so that for ¢, = ¢, =0 (or ¢ = 0) we recover the results for the
conventional continuum of Rudnicki and Rice (1975) ; namely,

—
=

= H“

h.

T=0, ftorg,, = lay, (23)
v
and
h, ,
‘G = =4 rOr 0y = 0. (24)

Forc¢, > 0and ¢, = 0. modes of type (18) exist for all /G 2 0 and arc excluded for #/G < 0
if 65, =1, or h/G> =} il a,, = 0. respectively. This case appears to be physically
unrealistic. In particular, the average strain model (5) falls into this category if the Taylor
expansion (7) is truncated after the second non-vanishing term. Of course, this does not
exclude the existence of special cases where such a model leads to reasonable results [see,
e.g. Lasry and Bclytschko (1988)]. For ¢, = —¢ < 0 and ¢. = 0 [see Aifantis (1987)] we
find
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T = 5
1 and e 0. (-5)

i.e. the critical conditions here for shear banding are the same as for the conventional
continuum with the exception that now the wavenumber at the onset of shear banding is
determined. namely g, = 0.

If ¢,. ¢, have an opposite sign. then for ¢; < 0 we recover (25). and for ¢; > 0 we
arrive at the same implausible situation as for ¢, = 0. The latter holds also if ¢, < 0 and
¢, <0.

An interesting case occurs if ¢, > 0 and ¢, > 0. In this case /G has a maximum over
¢ and from d/dg(#/G) = 0 we find

¢
G = 5t (26)
and thus
h —-x o}
L '_ 27

In particular, for the average strain model, for which ¢, ¢, are given by (9), we find
h./G = 0 in the plane-strain casc and h,/G = —0.833 for axisymmetric initial stress. In the
latter case of course (I < 0), the homogencous ground state should be assumed in the
softening regime ( < 0) such that & does not change sign and loss of cllipticity does not
oceur.

4. VARIATIONAL PRINCIPLE AND BOUNDARY CONDITIONS

In this section we supplement the proposed constitutive model by the corresponding
ficld equations. In fact, the only remaining issue to be addressed here is the problem of the
essential and natural boundary conditions for . In the conventional theory of plasticity
these are not required as ¥ is directly related to £ by the consistence condition. In the present
model the consistency condition (3) is a tourth-order partial differential equation which
according to (2)-(4) can be written as

, 1 ’ |
Cle)- 5, = ("+C [a;]' :r)‘i'+v.V'7'+c:V‘r. (28)

where & = dr/dy and ¢,, ¢, are taken as constants for simplicity. For the solution of
boundary value problems onc has to treat a system of four simultancous partial differential
cquations (instcad of the three stress-cquations of equilibrium of the conventional theory).
Now we will deduce the non-standard boundary conditions from a variational principle.
The variational principle also provides a convenient sctting for the numerical solution of
boundary valuec problems.

We consider the gencralized, incremental, total potential

0 . .
Flay =2Lc[é—~;;—;]'(é—r<>dV’+D[f]-£ﬁt-ﬁdA. (29)

D Q

where
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D[;] = L ™ = (V) - (V) + (V') - (V) d V. (30)

tJ)

and t are surface tractions prescribed on part ;B of éB. (Body forces have been neglected
for convenience.) Next. we assume that upon equilibrium the functional F{u, ] subjected
to the constraint 7 2 0 is stationaryt with respect to arbitrary infinitesimal variations of
[u. 7]. Thus with 34 = 0 on ¢B8— ¢+ 8. we have

§F =0= —J (Vé)- bi dV+f {6n—t} - u dt
B k]

r8

3 6' o, a, . . . .
-L (Cla- 5, ‘("+C[5]'2T>7—6.V'7—C:V‘7}6~;dV
_'[ {¢'|V‘,?+CZVV3};} “ndy dA+J {CIV(D};}H(VJ'}) -dd, (31
"8 2P 5

where ¢ B designates the boundary of the plastic zone in general being made up of the
elastic/plastic boundary (internal boundary) and parts of 8, and

a’=C‘:é——)3:;]. (32)

More details on the derivation of (31) are presented in the Appendix. As in the conventional
theory of plasticity, the internal boundary of 9 B is unknown a priori. This does not present
a problem in connection with incremental finite clement analyses. Also no additional
difficulty is entailed with the presence of the additional non-standard boundary terms.

According to the fundamental lemma of variational calculus [e.g. Elsgole (1961)], the
first line of (31) gives the stress-cquations of equilibrium and the standard boundary
conditions. The second line yields the consistency condition (29) and, eventually, from the
third line we can conclude the non-standard boundary conditions. This, however, is not
possible directly, i.c. the desired boundary conditions cannot simply be read off from (31);.
The reason for this is that V37 is not independent of §7 on 0" B because, if 7 is known on
o B so is the surface gradient of 67. An analogous situation has been treated by Mindlin
in his work on *'second gradients of strain and surface tension in lincar elasticity™ (1965).
In this connection it is pointed out that this dependence of the function and its surface
gradient has been overlooked in recent papers dealing with gradient plasticity modecls.

Now, by means of the surface divergence theorem for smooth closed surfaces [the case
of non-smooth surfaces is treated in the Appendix], the second term of (31); can be written
as

J c(VP)Vi-ndd = J e {(V, (VO -V, - [(V)n]} 57 dA
Ald] L

'8

+J. ,(V¥9)n-n(V,57) d4, (33)
"B

where V has been resolved into a surface gradient V, and a normal gradientnV, = (n ® n)V,
such that

t We are aware of the limitations of postulating variational principles for plasticity as this practice is related to
the question of the existence of thermodynamic potentials and the associated problem of minimizing free energy
functionals for the case of dissipative far from thermodynamic equilibrium processes such as the process of plastic
deformation. The point of view taken here is that we do not wish to provide any specific physical meaning or
interpretation to the functional .#. We simply treat it as an intermediate quantity which can motivate the extra
boundary conditions and facilitate the finite clement formulation of the problem.
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V.=(1-a®n)V. 34

Now we combine the terms with J7 and V87 and thus obtain for the third line of (31)

J‘ r,6; dA+f r.v.67d4 =0, (35)
P8 cPB
where
I = —(clV,,‘,."-i'-(‘:Vn(V:’,"))-f-(':{(Vs 'n)[(V':",‘)n'n]—Vs . [(V”’*/')n]}. (36)
=V )nen. 37N

It follows that on complementary parts of ¢ B we have
either ', =0 or 07 =0, (38)
and
either ', =0 or V., §7=0. 39)

Thus, the transformation (33) has led to two scalar (non-standard) boundary conditions
instead of what appeared first, in (31),, to be three boundary conditions. For ¢, = ¢, =0
the variational principle yields the equations of conventional plasticity. There is a formal
ditference to the conventional procedure in the fact that the plastic multiplier is treated
here as an independent variable. For numerical applications this feature can prove Lo be
advantageous, We will come back to this issue in the following scction,

As has already been mentioned in Section 2, for ¢, = 0 our models yiclds the clasto-
plastic generalization of the rigid models of Aifantis (1987) and Coleman and Hodgdon
(1985). Now we have completed this theory by equipping it on the basis of the variational
principle with boundary conditions for 7. For ¢, = 0 these assume the relatively simple
form

F=-¢V,7=0 or 8/=0, on J'B. (40)

In the formulation of (33) we have assumed that oF B is 2 smooth closed surface. If 0" B has
edges, additional terms have to be included in (33). We deal with this problem in the
Appendix. [Note that this concerns the case ¢, # 0 only.]

In concluding this section, we address bricfly the question of ellipticity of the governing
differential equations and the uniqueness of the solution. The governing differential cqua-
tions are strongly elliptic if the characteristic form of their principal part, i.¢. the term with
the highest-order derivative, is positive definite [e.g. Aubin (1972)]. According to (29) and
(30) this is the case if ¢, > 0, or for the special case ¢, = 0if —¢; > 0 (positive definiteness
of C[+] is assumed). Note that for ¢, and/or ¢, # 0 it was only within the ellipticity regime
that the shear band analyses in Scction 3 have yiclded physically plausible results. The
solution of the variational principle is unique if the second variation of the functional of
the so-called lincar comparison solid [which is obtained by dropping the constraint 7 2 0
in the evaluation of (31)] is positive definite. The proof for this is straightforward and
follows along the lines of Hill's (1958) proof for the conventional continuum. The first term
on the right-hand sidc of (29) is obviously positive semi-definite if C[*] is positive definite
and in particular positive if 07 = 0. Sufficient conditions for the positive definiteness of
D{¢7] are

h>0, ¢,<0, ;20 “4n

Thus, if the above conditions are satisfied and the boundary value problem at hand is
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solvable. then there exists only one solution. It should be noted that (41) ensures a specific
property of the governing differential equation and by no means is assigned a particular
physicul interpretation or represents a physical requirement.

5. FINITE ELEMENT SOLUTION OF THE VARIATIONAL EQUATIONS

In this section the governing equations are derived for a formal direct solution of the
variational principle (29tF) by the finite element method (Zienkiewicz, 1977 : Bathe, 1984).
Applications of the theory with respect to strain localization will be presented in a forth-
coming paper by de Borst and Mihlhaus (1991). We restrict ourselves to the case where «
in (4) depends on V-3 only. This case can be implemented rather easily in existing finite
element codes: v and 5 have to satisfy the same smoothness requirements (C° continuity)
so that also the same shape functions can be used for the interpolation. For the global
structure of the code this means that we now have only one additional degree of freedom
per nodal point besides the nodal-point displacements. In many codes (e.g. for coupled
thermal or coupled fluid-flow analyses) four degrees of freedom (or three in plane strain)
per node are already provided so that the global program structure can be left unaltered
and only the element routines have to be modified.

We assume

i, =p"al. 5 =¢"" and

ou, = pMont. o = oMY, M=1.2..... M 42)

where summation over A is assumed, M€ is the number of nodal points of cach element
and ¢ are the corresponding shape functions. In view ol (42), 0.7 [see (29)] becomes

) ) . i o N .
Y {[j oty d V] ) oM — [J‘ Comt ,)l»‘l- b Y dl/]«)u;"*,"‘
e B 4 I'S =T
ay, N , , <A
- [ﬁ Cont 7r/ oYt d V] Sug 53M + I:J; {hpY ¥ —c Yt} d V:' oy "',"v}
I - <

=3y {U” 1,«/)“’dA]<Sd,‘”}, (43)
TNy § ore o

where B¢ is the volume of cach clement and 8¢ is the boundary of it. For applications it
is more convenient to write (43) in matrix notation. For this we first introduce the vector
of the generalized nodal degrees of freedom

(@¥) = @i, a5, (44)
and thus (43) can be written as
Z ‘)‘q{l(l\"\ll\lq.\') = Z (Sq".’f", (45)
cc it ce &

where
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KMV 1 KMy
cwvy | D PN 4

R - @
topY dd

v =2, J ordd] (47)
ee’t8 b - - - - = = - - =

0
[Ki'], = J;e kajld’i'ﬁbly dv, (48)

is the standard. linear elastic element stiffness matrix of the conventional continuum. The
coupling matrix K,. is given by

KL = —J;c C:,k/% pioM dV, (49)
and
KYY = J: {(I1+C [:r] . g-;) dM PN —c (Vo) - (V(f:")} dv. (50)

For the assembly of the global stiffness matrix and the global nodal force vector one
proceeds as in the conventional continuum ; thus further explanation is not necessary here.
Onc has to note, however, that the § degrees of freedom have to be constrained at nodal
points within an clastic zone. The explicit implementation of such a constraint may be
inconvenient because one has then to modify the global code structure. Alternatively, one
night proceed quite pragmatically in the sense of o penalty method by “penalizing™ y at
integration points where F <0 and/or 7 <0 with an artificial hardening modulus
h = h*>» E where £ is the Young's modulus. At the sume time one sets the contributions
of this integration point to the components of the coupling matrix (49) equal to zero.

Eventually it should be noted that the present approach is applicable for the con-
ventional continuum as well, In this case we simply let ¢, — 0 in (50). It is conjectured
that even in this degenerate case the present approach has certain advantages over the
conventional procedure where 7 does not appear as an independent variable. We expect
that these advantages are particularly significant in connection with low order interpolation
functions.

6. CONCLUSIONS

(1) We have provided a modification to the classical rate-independent theory of plas-
ticity by incorporating higher-order gradients of the equivalent plastic strain into the yicld
condition. The flow rule and the clasticity law were left unaltered.

(2) Implications of the gradient terms were studied in connection with a shear-band
analysis for an infinite medium under uniaxial and plane-strain initial stress. It has been
shown that for certain ratios of the non-standard matcerial parameters a wave number
sclection is possible leading to estimates for the width and/or spacing of shear bands.

(3) Duc to the presence of strain gradieats in the constitutive relations, additional
(non-standard) boundary conditions arc required for the solution of cquilibrium states.
Such boundary conditions are deduced here from the assumption that the equilibrium
conditions and the consistency conditions are the Euler-Lagrange equations of an appro-
priate functional. Sufficient conditions for the ellipticity of the governing equations and the
uniqueness of the solution are given. The variational principle can be used as a starting
point for the construction of approximate solutions of equilibrium states by the finite
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element method. In this respect. we have denived the salient expressions for the application
of the finite element method in connection with the present gradient plasticity model.
Finally. an Appendix is given where details of various calculations are included.
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APPENDIX: MORE DETAILS ON THE DERIVATION OF THE EULER-LAGRANGE EQUATIONS
AND BOUNDARY CONDITIONS AT EDGES

In Section 4 the derivation of the non-standard boundary conditions was based on the assumption that upon
equilibrium states the first variation of the function #{u. y} (29) vanishes: thus

LA . NP NN
6F=Lc[¢—-7§]'6adl—J:wt'éuéA—J;{c[c—yi:l'i-;—lr/}éydl
—j (V) (V7)) dV+J‘ VP - (V6 dV = 0. (Al)
L] 8

By applying Gauss' theorem to the first two terms of (A1) we obtain the first line of (31). Now we consider
the second line of (A1) : we imagine the plastified part of 8( = 8) to be cut out. The boundary of B is designated
as & B. It should be noted that for the volume integrals a formal distinction between 8 and B* is not necessary
because 7 = 0 in B° = 8- BY. Application of Gauss' theorem on the first term of the second line of (A1) gives
the identity

J; c (Vi) (Vi) dV = '[', (¢, Vi n)dy d4 —J; (¢, Vip)é7 dV. (A2)
Accordingly, we find for the second term the representation
J:' CVIOH (VIR db = J:,' ({e2V'?y]n) - V37 dA —J; [e;V(VI)]- Yoy d¥
= J:F” ([¢:VV¥]n) - V57 dA — '[ . [€:V(V$)] ndy dA +J; (c.V*'y)s57dV. (A3)

Inserting (A2) and (A3) into (A1) gives the second and third line of (31).

Also in Section 4 it was assumed that the elastic/plastic boundary surface ¥ Bis smooth. Additional boundary
conditions are required if o' 8 has edges (Mindlin, 1965). Note that this affects only cases where the term ¢,V
is included in the hardening/softening rule.

Suppose &' B has an edge ¢, formed by the intersection of two segments 958 and 3% 8 of " B. Then for each
segment we have

c:f’ V., [(V¥9)néf] dA = ¢, {J" (V, 0} (V¥'n-n &7 dA +J: (V'¥9)n,,, - m,, 7 d.\'}, (A4)
S Sy
where 2 = 1, 2 and s is measured along ¢ in the direction of its unit tangent s, ; m,,, = s,,, X by, is the unit outward
normal to ¢ tangent to s, and we also have s, = —s,. Thus to the right-hand side of (33) we have to add the
term

'[ {(V*9)n-m|d7 ds, (AS)

where [(*)] denotes the jump of (+) when ¢ is approached from % 8 minus its value when it is approached from
2%8; and ds is positive in the dircction s,. Thus, in addition to (38), (39) along ¢, we also have to satisfy the
condition

[ =c[(m®m)-V?¥] =0 or 7 =0. (A6)



